Automated Action 4730c37915 Implement comprehensive transaction fraud monitoring API
- Created FastAPI application with transaction ingestion endpoints
- Built dynamic rule engine supporting velocity checks and aggregations
- Implemented real-time and batch screening capabilities
- Added rule management with versioning and rollback functionality
- Created comprehensive audit and reporting endpoints with pagination
- Set up SQLite database with proper migrations using Alembic
- Added intelligent caching for aggregate computations
- Included extensive API documentation and example rule definitions
- Configured CORS, health endpoints, and proper error handling
- Added support for time-windowed aggregations (sum, count, avg, max, min)
- Built background processing for high-volume batch screening
- Implemented field-agnostic rule conditions with flexible operators

Features include transaction ingestion, rule CRUD operations, real-time screening,
batch processing, aggregation computations, and comprehensive reporting capabilities
suitable for fintech fraud monitoring systems.
2025-06-27 16:00:48 +00:00

41 lines
635 B
INI

[alembic]
script_location = alembic
prepend_sys_path = .
version_path_separator = os
sqlalchemy.url = sqlite:////app/storage/db/db.sqlite
[post_write_hooks]
[loggers]
keys = root,sqlalchemy,alembic
[handlers]
keys = console
[formatters]
keys = generic
[logger_root]
level = WARN
handlers = console
qualname =
[logger_sqlalchemy]
level = WARN
handlers =
qualname = sqlalchemy.engine
[logger_alembic]
level = INFO
handlers =
qualname = alembic
[handler_console]
class = StreamHandler
args = (sys.stderr,)
level = NOTSET
formatter = generic
[formatter_generic]
format = %(levelname)-5.5s [%(name)s] %(message)s
datefmt = %H:%M:%S