Automated Action 545563e776 Implement comprehensive real-time chat API with NestJS
- Complete NestJS TypeScript implementation with WebSocket support
- Direct messaging (DM) and group chat functionality
- End-to-end encryption with AES encryption and key pairs
- Media file support (images, videos, audio, documents) up to 100MB
- Push notifications with Firebase Cloud Messaging integration
- Mention alerts and real-time typing indicators
- User authentication with JWT and Passport
- SQLite database with TypeORM entities and relationships
- Comprehensive API documentation with Swagger/OpenAPI
- File upload handling with secure access control
- Online/offline status tracking and presence management
- Message editing, deletion, and reply functionality
- Notification management with automatic cleanup
- Health check endpoint for monitoring
- CORS configuration for cross-origin requests
- Environment-based configuration management
- Structured for Flutter SDK integration

Features implemented:
 Real-time messaging with Socket.IO
 User registration and authentication
 Direct messages and group chats
 Media file uploads and management
 End-to-end encryption
 Push notifications
 Mention alerts
 Typing indicators
 Message read receipts
 Online status tracking
 File access control
 Comprehensive API documentation

Ready for Flutter SDK development and production deployment.
2025-06-21 17:13:05 +00:00

287 lines
10 KiB
JavaScript

"use strict";
Object.defineProperty(exports, "__esModule", { value: true });
exports.ripemd160 = exports.RIPEMD160 = exports.md5 = exports.MD5 = exports.sha1 = exports.SHA1 = void 0;
/**
SHA1 (RFC 3174), MD5 (RFC 1321) and RIPEMD160 (RFC 2286) legacy, weak hash functions.
Don't use them in a new protocol. What "weak" means:
- Collisions can be made with 2^18 effort in MD5, 2^60 in SHA1, 2^80 in RIPEMD160.
- No practical pre-image attacks (only theoretical, 2^123.4)
- HMAC seems kinda ok: https://datatracker.ietf.org/doc/html/rfc6151
* @module
*/
const _md_ts_1 = require("./_md.js");
const utils_ts_1 = require("./utils.js");
/** Initial SHA1 state */
const SHA1_IV = /* @__PURE__ */ Uint32Array.from([
0x67452301, 0xefcdab89, 0x98badcfe, 0x10325476, 0xc3d2e1f0,
]);
// Reusable temporary buffer
const SHA1_W = /* @__PURE__ */ new Uint32Array(80);
/** SHA1 legacy hash class. */
class SHA1 extends _md_ts_1.HashMD {
constructor() {
super(64, 20, 8, false);
this.A = SHA1_IV[0] | 0;
this.B = SHA1_IV[1] | 0;
this.C = SHA1_IV[2] | 0;
this.D = SHA1_IV[3] | 0;
this.E = SHA1_IV[4] | 0;
}
get() {
const { A, B, C, D, E } = this;
return [A, B, C, D, E];
}
set(A, B, C, D, E) {
this.A = A | 0;
this.B = B | 0;
this.C = C | 0;
this.D = D | 0;
this.E = E | 0;
}
process(view, offset) {
for (let i = 0; i < 16; i++, offset += 4)
SHA1_W[i] = view.getUint32(offset, false);
for (let i = 16; i < 80; i++)
SHA1_W[i] = (0, utils_ts_1.rotl)(SHA1_W[i - 3] ^ SHA1_W[i - 8] ^ SHA1_W[i - 14] ^ SHA1_W[i - 16], 1);
// Compression function main loop, 80 rounds
let { A, B, C, D, E } = this;
for (let i = 0; i < 80; i++) {
let F, K;
if (i < 20) {
F = (0, _md_ts_1.Chi)(B, C, D);
K = 0x5a827999;
}
else if (i < 40) {
F = B ^ C ^ D;
K = 0x6ed9eba1;
}
else if (i < 60) {
F = (0, _md_ts_1.Maj)(B, C, D);
K = 0x8f1bbcdc;
}
else {
F = B ^ C ^ D;
K = 0xca62c1d6;
}
const T = ((0, utils_ts_1.rotl)(A, 5) + F + E + K + SHA1_W[i]) | 0;
E = D;
D = C;
C = (0, utils_ts_1.rotl)(B, 30);
B = A;
A = T;
}
// Add the compressed chunk to the current hash value
A = (A + this.A) | 0;
B = (B + this.B) | 0;
C = (C + this.C) | 0;
D = (D + this.D) | 0;
E = (E + this.E) | 0;
this.set(A, B, C, D, E);
}
roundClean() {
(0, utils_ts_1.clean)(SHA1_W);
}
destroy() {
this.set(0, 0, 0, 0, 0);
(0, utils_ts_1.clean)(this.buffer);
}
}
exports.SHA1 = SHA1;
/** SHA1 (RFC 3174) legacy hash function. It was cryptographically broken. */
exports.sha1 = (0, utils_ts_1.createHasher)(() => new SHA1());
/** Per-round constants */
const p32 = /* @__PURE__ */ Math.pow(2, 32);
const K = /* @__PURE__ */ Array.from({ length: 64 }, (_, i) => Math.floor(p32 * Math.abs(Math.sin(i + 1))));
/** md5 initial state: same as sha1, but 4 u32 instead of 5. */
const MD5_IV = /* @__PURE__ */ SHA1_IV.slice(0, 4);
// Reusable temporary buffer
const MD5_W = /* @__PURE__ */ new Uint32Array(16);
/** MD5 legacy hash class. */
class MD5 extends _md_ts_1.HashMD {
constructor() {
super(64, 16, 8, true);
this.A = MD5_IV[0] | 0;
this.B = MD5_IV[1] | 0;
this.C = MD5_IV[2] | 0;
this.D = MD5_IV[3] | 0;
}
get() {
const { A, B, C, D } = this;
return [A, B, C, D];
}
set(A, B, C, D) {
this.A = A | 0;
this.B = B | 0;
this.C = C | 0;
this.D = D | 0;
}
process(view, offset) {
for (let i = 0; i < 16; i++, offset += 4)
MD5_W[i] = view.getUint32(offset, true);
// Compression function main loop, 64 rounds
let { A, B, C, D } = this;
for (let i = 0; i < 64; i++) {
let F, g, s;
if (i < 16) {
F = (0, _md_ts_1.Chi)(B, C, D);
g = i;
s = [7, 12, 17, 22];
}
else if (i < 32) {
F = (0, _md_ts_1.Chi)(D, B, C);
g = (5 * i + 1) % 16;
s = [5, 9, 14, 20];
}
else if (i < 48) {
F = B ^ C ^ D;
g = (3 * i + 5) % 16;
s = [4, 11, 16, 23];
}
else {
F = C ^ (B | ~D);
g = (7 * i) % 16;
s = [6, 10, 15, 21];
}
F = F + A + K[i] + MD5_W[g];
A = D;
D = C;
C = B;
B = B + (0, utils_ts_1.rotl)(F, s[i % 4]);
}
// Add the compressed chunk to the current hash value
A = (A + this.A) | 0;
B = (B + this.B) | 0;
C = (C + this.C) | 0;
D = (D + this.D) | 0;
this.set(A, B, C, D);
}
roundClean() {
(0, utils_ts_1.clean)(MD5_W);
}
destroy() {
this.set(0, 0, 0, 0);
(0, utils_ts_1.clean)(this.buffer);
}
}
exports.MD5 = MD5;
/**
* MD5 (RFC 1321) legacy hash function. It was cryptographically broken.
* MD5 architecture is similar to SHA1, with some differences:
* - Reduced output length: 16 bytes (128 bit) instead of 20
* - 64 rounds, instead of 80
* - Little-endian: could be faster, but will require more code
* - Non-linear index selection: huge speed-up for unroll
* - Per round constants: more memory accesses, additional speed-up for unroll
*/
exports.md5 = (0, utils_ts_1.createHasher)(() => new MD5());
// RIPEMD-160
const Rho160 = /* @__PURE__ */ Uint8Array.from([
7, 4, 13, 1, 10, 6, 15, 3, 12, 0, 9, 5, 2, 14, 11, 8,
]);
const Id160 = /* @__PURE__ */ (() => Uint8Array.from(new Array(16).fill(0).map((_, i) => i)))();
const Pi160 = /* @__PURE__ */ (() => Id160.map((i) => (9 * i + 5) % 16))();
const idxLR = /* @__PURE__ */ (() => {
const L = [Id160];
const R = [Pi160];
const res = [L, R];
for (let i = 0; i < 4; i++)
for (let j of res)
j.push(j[i].map((k) => Rho160[k]));
return res;
})();
const idxL = /* @__PURE__ */ (() => idxLR[0])();
const idxR = /* @__PURE__ */ (() => idxLR[1])();
// const [idxL, idxR] = idxLR;
const shifts160 = /* @__PURE__ */ [
[11, 14, 15, 12, 5, 8, 7, 9, 11, 13, 14, 15, 6, 7, 9, 8],
[12, 13, 11, 15, 6, 9, 9, 7, 12, 15, 11, 13, 7, 8, 7, 7],
[13, 15, 14, 11, 7, 7, 6, 8, 13, 14, 13, 12, 5, 5, 6, 9],
[14, 11, 12, 14, 8, 6, 5, 5, 15, 12, 15, 14, 9, 9, 8, 6],
[15, 12, 13, 13, 9, 5, 8, 6, 14, 11, 12, 11, 8, 6, 5, 5],
].map((i) => Uint8Array.from(i));
const shiftsL160 = /* @__PURE__ */ idxL.map((idx, i) => idx.map((j) => shifts160[i][j]));
const shiftsR160 = /* @__PURE__ */ idxR.map((idx, i) => idx.map((j) => shifts160[i][j]));
const Kl160 = /* @__PURE__ */ Uint32Array.from([
0x00000000, 0x5a827999, 0x6ed9eba1, 0x8f1bbcdc, 0xa953fd4e,
]);
const Kr160 = /* @__PURE__ */ Uint32Array.from([
0x50a28be6, 0x5c4dd124, 0x6d703ef3, 0x7a6d76e9, 0x00000000,
]);
// It's called f() in spec.
function ripemd_f(group, x, y, z) {
if (group === 0)
return x ^ y ^ z;
if (group === 1)
return (x & y) | (~x & z);
if (group === 2)
return (x | ~y) ^ z;
if (group === 3)
return (x & z) | (y & ~z);
return x ^ (y | ~z);
}
// Reusable temporary buffer
const BUF_160 = /* @__PURE__ */ new Uint32Array(16);
class RIPEMD160 extends _md_ts_1.HashMD {
constructor() {
super(64, 20, 8, true);
this.h0 = 0x67452301 | 0;
this.h1 = 0xefcdab89 | 0;
this.h2 = 0x98badcfe | 0;
this.h3 = 0x10325476 | 0;
this.h4 = 0xc3d2e1f0 | 0;
}
get() {
const { h0, h1, h2, h3, h4 } = this;
return [h0, h1, h2, h3, h4];
}
set(h0, h1, h2, h3, h4) {
this.h0 = h0 | 0;
this.h1 = h1 | 0;
this.h2 = h2 | 0;
this.h3 = h3 | 0;
this.h4 = h4 | 0;
}
process(view, offset) {
for (let i = 0; i < 16; i++, offset += 4)
BUF_160[i] = view.getUint32(offset, true);
// prettier-ignore
let al = this.h0 | 0, ar = al, bl = this.h1 | 0, br = bl, cl = this.h2 | 0, cr = cl, dl = this.h3 | 0, dr = dl, el = this.h4 | 0, er = el;
// Instead of iterating 0 to 80, we split it into 5 groups
// And use the groups in constants, functions, etc. Much simpler
for (let group = 0; group < 5; group++) {
const rGroup = 4 - group;
const hbl = Kl160[group], hbr = Kr160[group]; // prettier-ignore
const rl = idxL[group], rr = idxR[group]; // prettier-ignore
const sl = shiftsL160[group], sr = shiftsR160[group]; // prettier-ignore
for (let i = 0; i < 16; i++) {
const tl = ((0, utils_ts_1.rotl)(al + ripemd_f(group, bl, cl, dl) + BUF_160[rl[i]] + hbl, sl[i]) + el) | 0;
al = el, el = dl, dl = (0, utils_ts_1.rotl)(cl, 10) | 0, cl = bl, bl = tl; // prettier-ignore
}
// 2 loops are 10% faster
for (let i = 0; i < 16; i++) {
const tr = ((0, utils_ts_1.rotl)(ar + ripemd_f(rGroup, br, cr, dr) + BUF_160[rr[i]] + hbr, sr[i]) + er) | 0;
ar = er, er = dr, dr = (0, utils_ts_1.rotl)(cr, 10) | 0, cr = br, br = tr; // prettier-ignore
}
}
// Add the compressed chunk to the current hash value
this.set((this.h1 + cl + dr) | 0, (this.h2 + dl + er) | 0, (this.h3 + el + ar) | 0, (this.h4 + al + br) | 0, (this.h0 + bl + cr) | 0);
}
roundClean() {
(0, utils_ts_1.clean)(BUF_160);
}
destroy() {
this.destroyed = true;
(0, utils_ts_1.clean)(this.buffer);
this.set(0, 0, 0, 0, 0);
}
}
exports.RIPEMD160 = RIPEMD160;
/**
* RIPEMD-160 - a legacy hash function from 1990s.
* * https://homes.esat.kuleuven.be/~bosselae/ripemd160.html
* * https://homes.esat.kuleuven.be/~bosselae/ripemd160/pdf/AB-9601/AB-9601.pdf
*/
exports.ripemd160 = (0, utils_ts_1.createHasher)(() => new RIPEMD160());
//# sourceMappingURL=legacy.js.map