
- Complete NestJS TypeScript implementation with WebSocket support - Direct messaging (DM) and group chat functionality - End-to-end encryption with AES encryption and key pairs - Media file support (images, videos, audio, documents) up to 100MB - Push notifications with Firebase Cloud Messaging integration - Mention alerts and real-time typing indicators - User authentication with JWT and Passport - SQLite database with TypeORM entities and relationships - Comprehensive API documentation with Swagger/OpenAPI - File upload handling with secure access control - Online/offline status tracking and presence management - Message editing, deletion, and reply functionality - Notification management with automatic cleanup - Health check endpoint for monitoring - CORS configuration for cross-origin requests - Environment-based configuration management - Structured for Flutter SDK integration Features implemented: ✅ Real-time messaging with Socket.IO ✅ User registration and authentication ✅ Direct messages and group chats ✅ Media file uploads and management ✅ End-to-end encryption ✅ Push notifications ✅ Mention alerts ✅ Typing indicators ✅ Message read receipts ✅ Online status tracking ✅ File access control ✅ Comprehensive API documentation Ready for Flutter SDK development and production deployment.
287 lines
10 KiB
JavaScript
287 lines
10 KiB
JavaScript
"use strict";
|
|
Object.defineProperty(exports, "__esModule", { value: true });
|
|
exports.ripemd160 = exports.RIPEMD160 = exports.md5 = exports.MD5 = exports.sha1 = exports.SHA1 = void 0;
|
|
/**
|
|
|
|
SHA1 (RFC 3174), MD5 (RFC 1321) and RIPEMD160 (RFC 2286) legacy, weak hash functions.
|
|
Don't use them in a new protocol. What "weak" means:
|
|
|
|
- Collisions can be made with 2^18 effort in MD5, 2^60 in SHA1, 2^80 in RIPEMD160.
|
|
- No practical pre-image attacks (only theoretical, 2^123.4)
|
|
- HMAC seems kinda ok: https://datatracker.ietf.org/doc/html/rfc6151
|
|
* @module
|
|
*/
|
|
const _md_ts_1 = require("./_md.js");
|
|
const utils_ts_1 = require("./utils.js");
|
|
/** Initial SHA1 state */
|
|
const SHA1_IV = /* @__PURE__ */ Uint32Array.from([
|
|
0x67452301, 0xefcdab89, 0x98badcfe, 0x10325476, 0xc3d2e1f0,
|
|
]);
|
|
// Reusable temporary buffer
|
|
const SHA1_W = /* @__PURE__ */ new Uint32Array(80);
|
|
/** SHA1 legacy hash class. */
|
|
class SHA1 extends _md_ts_1.HashMD {
|
|
constructor() {
|
|
super(64, 20, 8, false);
|
|
this.A = SHA1_IV[0] | 0;
|
|
this.B = SHA1_IV[1] | 0;
|
|
this.C = SHA1_IV[2] | 0;
|
|
this.D = SHA1_IV[3] | 0;
|
|
this.E = SHA1_IV[4] | 0;
|
|
}
|
|
get() {
|
|
const { A, B, C, D, E } = this;
|
|
return [A, B, C, D, E];
|
|
}
|
|
set(A, B, C, D, E) {
|
|
this.A = A | 0;
|
|
this.B = B | 0;
|
|
this.C = C | 0;
|
|
this.D = D | 0;
|
|
this.E = E | 0;
|
|
}
|
|
process(view, offset) {
|
|
for (let i = 0; i < 16; i++, offset += 4)
|
|
SHA1_W[i] = view.getUint32(offset, false);
|
|
for (let i = 16; i < 80; i++)
|
|
SHA1_W[i] = (0, utils_ts_1.rotl)(SHA1_W[i - 3] ^ SHA1_W[i - 8] ^ SHA1_W[i - 14] ^ SHA1_W[i - 16], 1);
|
|
// Compression function main loop, 80 rounds
|
|
let { A, B, C, D, E } = this;
|
|
for (let i = 0; i < 80; i++) {
|
|
let F, K;
|
|
if (i < 20) {
|
|
F = (0, _md_ts_1.Chi)(B, C, D);
|
|
K = 0x5a827999;
|
|
}
|
|
else if (i < 40) {
|
|
F = B ^ C ^ D;
|
|
K = 0x6ed9eba1;
|
|
}
|
|
else if (i < 60) {
|
|
F = (0, _md_ts_1.Maj)(B, C, D);
|
|
K = 0x8f1bbcdc;
|
|
}
|
|
else {
|
|
F = B ^ C ^ D;
|
|
K = 0xca62c1d6;
|
|
}
|
|
const T = ((0, utils_ts_1.rotl)(A, 5) + F + E + K + SHA1_W[i]) | 0;
|
|
E = D;
|
|
D = C;
|
|
C = (0, utils_ts_1.rotl)(B, 30);
|
|
B = A;
|
|
A = T;
|
|
}
|
|
// Add the compressed chunk to the current hash value
|
|
A = (A + this.A) | 0;
|
|
B = (B + this.B) | 0;
|
|
C = (C + this.C) | 0;
|
|
D = (D + this.D) | 0;
|
|
E = (E + this.E) | 0;
|
|
this.set(A, B, C, D, E);
|
|
}
|
|
roundClean() {
|
|
(0, utils_ts_1.clean)(SHA1_W);
|
|
}
|
|
destroy() {
|
|
this.set(0, 0, 0, 0, 0);
|
|
(0, utils_ts_1.clean)(this.buffer);
|
|
}
|
|
}
|
|
exports.SHA1 = SHA1;
|
|
/** SHA1 (RFC 3174) legacy hash function. It was cryptographically broken. */
|
|
exports.sha1 = (0, utils_ts_1.createHasher)(() => new SHA1());
|
|
/** Per-round constants */
|
|
const p32 = /* @__PURE__ */ Math.pow(2, 32);
|
|
const K = /* @__PURE__ */ Array.from({ length: 64 }, (_, i) => Math.floor(p32 * Math.abs(Math.sin(i + 1))));
|
|
/** md5 initial state: same as sha1, but 4 u32 instead of 5. */
|
|
const MD5_IV = /* @__PURE__ */ SHA1_IV.slice(0, 4);
|
|
// Reusable temporary buffer
|
|
const MD5_W = /* @__PURE__ */ new Uint32Array(16);
|
|
/** MD5 legacy hash class. */
|
|
class MD5 extends _md_ts_1.HashMD {
|
|
constructor() {
|
|
super(64, 16, 8, true);
|
|
this.A = MD5_IV[0] | 0;
|
|
this.B = MD5_IV[1] | 0;
|
|
this.C = MD5_IV[2] | 0;
|
|
this.D = MD5_IV[3] | 0;
|
|
}
|
|
get() {
|
|
const { A, B, C, D } = this;
|
|
return [A, B, C, D];
|
|
}
|
|
set(A, B, C, D) {
|
|
this.A = A | 0;
|
|
this.B = B | 0;
|
|
this.C = C | 0;
|
|
this.D = D | 0;
|
|
}
|
|
process(view, offset) {
|
|
for (let i = 0; i < 16; i++, offset += 4)
|
|
MD5_W[i] = view.getUint32(offset, true);
|
|
// Compression function main loop, 64 rounds
|
|
let { A, B, C, D } = this;
|
|
for (let i = 0; i < 64; i++) {
|
|
let F, g, s;
|
|
if (i < 16) {
|
|
F = (0, _md_ts_1.Chi)(B, C, D);
|
|
g = i;
|
|
s = [7, 12, 17, 22];
|
|
}
|
|
else if (i < 32) {
|
|
F = (0, _md_ts_1.Chi)(D, B, C);
|
|
g = (5 * i + 1) % 16;
|
|
s = [5, 9, 14, 20];
|
|
}
|
|
else if (i < 48) {
|
|
F = B ^ C ^ D;
|
|
g = (3 * i + 5) % 16;
|
|
s = [4, 11, 16, 23];
|
|
}
|
|
else {
|
|
F = C ^ (B | ~D);
|
|
g = (7 * i) % 16;
|
|
s = [6, 10, 15, 21];
|
|
}
|
|
F = F + A + K[i] + MD5_W[g];
|
|
A = D;
|
|
D = C;
|
|
C = B;
|
|
B = B + (0, utils_ts_1.rotl)(F, s[i % 4]);
|
|
}
|
|
// Add the compressed chunk to the current hash value
|
|
A = (A + this.A) | 0;
|
|
B = (B + this.B) | 0;
|
|
C = (C + this.C) | 0;
|
|
D = (D + this.D) | 0;
|
|
this.set(A, B, C, D);
|
|
}
|
|
roundClean() {
|
|
(0, utils_ts_1.clean)(MD5_W);
|
|
}
|
|
destroy() {
|
|
this.set(0, 0, 0, 0);
|
|
(0, utils_ts_1.clean)(this.buffer);
|
|
}
|
|
}
|
|
exports.MD5 = MD5;
|
|
/**
|
|
* MD5 (RFC 1321) legacy hash function. It was cryptographically broken.
|
|
* MD5 architecture is similar to SHA1, with some differences:
|
|
* - Reduced output length: 16 bytes (128 bit) instead of 20
|
|
* - 64 rounds, instead of 80
|
|
* - Little-endian: could be faster, but will require more code
|
|
* - Non-linear index selection: huge speed-up for unroll
|
|
* - Per round constants: more memory accesses, additional speed-up for unroll
|
|
*/
|
|
exports.md5 = (0, utils_ts_1.createHasher)(() => new MD5());
|
|
// RIPEMD-160
|
|
const Rho160 = /* @__PURE__ */ Uint8Array.from([
|
|
7, 4, 13, 1, 10, 6, 15, 3, 12, 0, 9, 5, 2, 14, 11, 8,
|
|
]);
|
|
const Id160 = /* @__PURE__ */ (() => Uint8Array.from(new Array(16).fill(0).map((_, i) => i)))();
|
|
const Pi160 = /* @__PURE__ */ (() => Id160.map((i) => (9 * i + 5) % 16))();
|
|
const idxLR = /* @__PURE__ */ (() => {
|
|
const L = [Id160];
|
|
const R = [Pi160];
|
|
const res = [L, R];
|
|
for (let i = 0; i < 4; i++)
|
|
for (let j of res)
|
|
j.push(j[i].map((k) => Rho160[k]));
|
|
return res;
|
|
})();
|
|
const idxL = /* @__PURE__ */ (() => idxLR[0])();
|
|
const idxR = /* @__PURE__ */ (() => idxLR[1])();
|
|
// const [idxL, idxR] = idxLR;
|
|
const shifts160 = /* @__PURE__ */ [
|
|
[11, 14, 15, 12, 5, 8, 7, 9, 11, 13, 14, 15, 6, 7, 9, 8],
|
|
[12, 13, 11, 15, 6, 9, 9, 7, 12, 15, 11, 13, 7, 8, 7, 7],
|
|
[13, 15, 14, 11, 7, 7, 6, 8, 13, 14, 13, 12, 5, 5, 6, 9],
|
|
[14, 11, 12, 14, 8, 6, 5, 5, 15, 12, 15, 14, 9, 9, 8, 6],
|
|
[15, 12, 13, 13, 9, 5, 8, 6, 14, 11, 12, 11, 8, 6, 5, 5],
|
|
].map((i) => Uint8Array.from(i));
|
|
const shiftsL160 = /* @__PURE__ */ idxL.map((idx, i) => idx.map((j) => shifts160[i][j]));
|
|
const shiftsR160 = /* @__PURE__ */ idxR.map((idx, i) => idx.map((j) => shifts160[i][j]));
|
|
const Kl160 = /* @__PURE__ */ Uint32Array.from([
|
|
0x00000000, 0x5a827999, 0x6ed9eba1, 0x8f1bbcdc, 0xa953fd4e,
|
|
]);
|
|
const Kr160 = /* @__PURE__ */ Uint32Array.from([
|
|
0x50a28be6, 0x5c4dd124, 0x6d703ef3, 0x7a6d76e9, 0x00000000,
|
|
]);
|
|
// It's called f() in spec.
|
|
function ripemd_f(group, x, y, z) {
|
|
if (group === 0)
|
|
return x ^ y ^ z;
|
|
if (group === 1)
|
|
return (x & y) | (~x & z);
|
|
if (group === 2)
|
|
return (x | ~y) ^ z;
|
|
if (group === 3)
|
|
return (x & z) | (y & ~z);
|
|
return x ^ (y | ~z);
|
|
}
|
|
// Reusable temporary buffer
|
|
const BUF_160 = /* @__PURE__ */ new Uint32Array(16);
|
|
class RIPEMD160 extends _md_ts_1.HashMD {
|
|
constructor() {
|
|
super(64, 20, 8, true);
|
|
this.h0 = 0x67452301 | 0;
|
|
this.h1 = 0xefcdab89 | 0;
|
|
this.h2 = 0x98badcfe | 0;
|
|
this.h3 = 0x10325476 | 0;
|
|
this.h4 = 0xc3d2e1f0 | 0;
|
|
}
|
|
get() {
|
|
const { h0, h1, h2, h3, h4 } = this;
|
|
return [h0, h1, h2, h3, h4];
|
|
}
|
|
set(h0, h1, h2, h3, h4) {
|
|
this.h0 = h0 | 0;
|
|
this.h1 = h1 | 0;
|
|
this.h2 = h2 | 0;
|
|
this.h3 = h3 | 0;
|
|
this.h4 = h4 | 0;
|
|
}
|
|
process(view, offset) {
|
|
for (let i = 0; i < 16; i++, offset += 4)
|
|
BUF_160[i] = view.getUint32(offset, true);
|
|
// prettier-ignore
|
|
let al = this.h0 | 0, ar = al, bl = this.h1 | 0, br = bl, cl = this.h2 | 0, cr = cl, dl = this.h3 | 0, dr = dl, el = this.h4 | 0, er = el;
|
|
// Instead of iterating 0 to 80, we split it into 5 groups
|
|
// And use the groups in constants, functions, etc. Much simpler
|
|
for (let group = 0; group < 5; group++) {
|
|
const rGroup = 4 - group;
|
|
const hbl = Kl160[group], hbr = Kr160[group]; // prettier-ignore
|
|
const rl = idxL[group], rr = idxR[group]; // prettier-ignore
|
|
const sl = shiftsL160[group], sr = shiftsR160[group]; // prettier-ignore
|
|
for (let i = 0; i < 16; i++) {
|
|
const tl = ((0, utils_ts_1.rotl)(al + ripemd_f(group, bl, cl, dl) + BUF_160[rl[i]] + hbl, sl[i]) + el) | 0;
|
|
al = el, el = dl, dl = (0, utils_ts_1.rotl)(cl, 10) | 0, cl = bl, bl = tl; // prettier-ignore
|
|
}
|
|
// 2 loops are 10% faster
|
|
for (let i = 0; i < 16; i++) {
|
|
const tr = ((0, utils_ts_1.rotl)(ar + ripemd_f(rGroup, br, cr, dr) + BUF_160[rr[i]] + hbr, sr[i]) + er) | 0;
|
|
ar = er, er = dr, dr = (0, utils_ts_1.rotl)(cr, 10) | 0, cr = br, br = tr; // prettier-ignore
|
|
}
|
|
}
|
|
// Add the compressed chunk to the current hash value
|
|
this.set((this.h1 + cl + dr) | 0, (this.h2 + dl + er) | 0, (this.h3 + el + ar) | 0, (this.h4 + al + br) | 0, (this.h0 + bl + cr) | 0);
|
|
}
|
|
roundClean() {
|
|
(0, utils_ts_1.clean)(BUF_160);
|
|
}
|
|
destroy() {
|
|
this.destroyed = true;
|
|
(0, utils_ts_1.clean)(this.buffer);
|
|
this.set(0, 0, 0, 0, 0);
|
|
}
|
|
}
|
|
exports.RIPEMD160 = RIPEMD160;
|
|
/**
|
|
* RIPEMD-160 - a legacy hash function from 1990s.
|
|
* * https://homes.esat.kuleuven.be/~bosselae/ripemd160.html
|
|
* * https://homes.esat.kuleuven.be/~bosselae/ripemd160/pdf/AB-9601/AB-9601.pdf
|
|
*/
|
|
exports.ripemd160 = (0, utils_ts_1.createHasher)(() => new RIPEMD160());
|
|
//# sourceMappingURL=legacy.js.map
|