Automated Action 545563e776 Implement comprehensive real-time chat API with NestJS
- Complete NestJS TypeScript implementation with WebSocket support
- Direct messaging (DM) and group chat functionality
- End-to-end encryption with AES encryption and key pairs
- Media file support (images, videos, audio, documents) up to 100MB
- Push notifications with Firebase Cloud Messaging integration
- Mention alerts and real-time typing indicators
- User authentication with JWT and Passport
- SQLite database with TypeORM entities and relationships
- Comprehensive API documentation with Swagger/OpenAPI
- File upload handling with secure access control
- Online/offline status tracking and presence management
- Message editing, deletion, and reply functionality
- Notification management with automatic cleanup
- Health check endpoint for monitoring
- CORS configuration for cross-origin requests
- Environment-based configuration management
- Structured for Flutter SDK integration

Features implemented:
 Real-time messaging with Socket.IO
 User registration and authentication
 Direct messages and group chats
 Media file uploads and management
 End-to-end encryption
 Push notifications
 Mention alerts
 Typing indicators
 Message read receipts
 Online status tracking
 File access control
 Comprehensive API documentation

Ready for Flutter SDK development and production deployment.
2025-06-21 17:13:05 +00:00

401 lines
17 KiB
JavaScript

"use strict";
Object.defineProperty(exports, "__esModule", { value: true });
exports.argon2idAsync = exports.argon2iAsync = exports.argon2dAsync = exports.argon2id = exports.argon2i = exports.argon2d = void 0;
/**
* Argon2 KDF from RFC 9106. Can be used to create a key from password and salt.
* We suggest to use Scrypt. JS Argon is 2-10x slower than native code because of 64-bitness:
* * argon uses uint64, but JS doesn't have fast uint64array
* * uint64 multiplication is 1/3 of time
* * `P` function would be very nice with u64, because most of value will be in registers,
* hovewer with u32 it will require 32 registers, which is too much.
* * JS arrays do slow bound checks, so reading from `A2_BUF` slows it down
* @module
*/
const _u64_ts_1 = require("./_u64.js");
const blake2_ts_1 = require("./blake2.js");
const utils_ts_1 = require("./utils.js");
const AT = { Argond2d: 0, Argon2i: 1, Argon2id: 2 };
const ARGON2_SYNC_POINTS = 4;
const abytesOrZero = (buf) => {
if (buf === undefined)
return Uint8Array.of();
return (0, utils_ts_1.kdfInputToBytes)(buf);
};
// u32 * u32 = u64
function mul(a, b) {
const aL = a & 0xffff;
const aH = a >>> 16;
const bL = b & 0xffff;
const bH = b >>> 16;
const ll = Math.imul(aL, bL);
const hl = Math.imul(aH, bL);
const lh = Math.imul(aL, bH);
const hh = Math.imul(aH, bH);
const carry = (ll >>> 16) + (hl & 0xffff) + lh;
const high = (hh + (hl >>> 16) + (carry >>> 16)) | 0;
const low = (carry << 16) | (ll & 0xffff);
return { h: high, l: low };
}
function mul2(a, b) {
// 2 * a * b (via shifts)
const { h, l } = mul(a, b);
return { h: ((h << 1) | (l >>> 31)) & 4294967295, l: (l << 1) & 4294967295 };
}
// BlaMka permutation for Argon2
// A + B + (2 * u32(A) * u32(B))
function blamka(Ah, Al, Bh, Bl) {
const { h: Ch, l: Cl } = mul2(Al, Bl);
// A + B + (2 * A * B)
const Rll = (0, _u64_ts_1.add3L)(Al, Bl, Cl);
return { h: (0, _u64_ts_1.add3H)(Rll, Ah, Bh, Ch), l: Rll | 0 };
}
// Temporary block buffer
const A2_BUF = new Uint32Array(256); // 1024 bytes (matrix 16x16)
function G(a, b, c, d) {
let Al = A2_BUF[2 * a], Ah = A2_BUF[2 * a + 1]; // prettier-ignore
let Bl = A2_BUF[2 * b], Bh = A2_BUF[2 * b + 1]; // prettier-ignore
let Cl = A2_BUF[2 * c], Ch = A2_BUF[2 * c + 1]; // prettier-ignore
let Dl = A2_BUF[2 * d], Dh = A2_BUF[2 * d + 1]; // prettier-ignore
({ h: Ah, l: Al } = blamka(Ah, Al, Bh, Bl));
({ Dh, Dl } = { Dh: Dh ^ Ah, Dl: Dl ^ Al });
({ Dh, Dl } = { Dh: (0, _u64_ts_1.rotr32H)(Dh, Dl), Dl: (0, _u64_ts_1.rotr32L)(Dh, Dl) });
({ h: Ch, l: Cl } = blamka(Ch, Cl, Dh, Dl));
({ Bh, Bl } = { Bh: Bh ^ Ch, Bl: Bl ^ Cl });
({ Bh, Bl } = { Bh: (0, _u64_ts_1.rotrSH)(Bh, Bl, 24), Bl: (0, _u64_ts_1.rotrSL)(Bh, Bl, 24) });
({ h: Ah, l: Al } = blamka(Ah, Al, Bh, Bl));
({ Dh, Dl } = { Dh: Dh ^ Ah, Dl: Dl ^ Al });
({ Dh, Dl } = { Dh: (0, _u64_ts_1.rotrSH)(Dh, Dl, 16), Dl: (0, _u64_ts_1.rotrSL)(Dh, Dl, 16) });
({ h: Ch, l: Cl } = blamka(Ch, Cl, Dh, Dl));
({ Bh, Bl } = { Bh: Bh ^ Ch, Bl: Bl ^ Cl });
({ Bh, Bl } = { Bh: (0, _u64_ts_1.rotrBH)(Bh, Bl, 63), Bl: (0, _u64_ts_1.rotrBL)(Bh, Bl, 63) });
(A2_BUF[2 * a] = Al), (A2_BUF[2 * a + 1] = Ah);
(A2_BUF[2 * b] = Bl), (A2_BUF[2 * b + 1] = Bh);
(A2_BUF[2 * c] = Cl), (A2_BUF[2 * c + 1] = Ch);
(A2_BUF[2 * d] = Dl), (A2_BUF[2 * d + 1] = Dh);
}
// prettier-ignore
function P(v00, v01, v02, v03, v04, v05, v06, v07, v08, v09, v10, v11, v12, v13, v14, v15) {
G(v00, v04, v08, v12);
G(v01, v05, v09, v13);
G(v02, v06, v10, v14);
G(v03, v07, v11, v15);
G(v00, v05, v10, v15);
G(v01, v06, v11, v12);
G(v02, v07, v08, v13);
G(v03, v04, v09, v14);
}
function block(x, xPos, yPos, outPos, needXor) {
for (let i = 0; i < 256; i++)
A2_BUF[i] = x[xPos + i] ^ x[yPos + i];
// columns (8)
for (let i = 0; i < 128; i += 16) {
// prettier-ignore
P(i, i + 1, i + 2, i + 3, i + 4, i + 5, i + 6, i + 7, i + 8, i + 9, i + 10, i + 11, i + 12, i + 13, i + 14, i + 15);
}
// rows (8)
for (let i = 0; i < 16; i += 2) {
// prettier-ignore
P(i, i + 1, i + 16, i + 17, i + 32, i + 33, i + 48, i + 49, i + 64, i + 65, i + 80, i + 81, i + 96, i + 97, i + 112, i + 113);
}
if (needXor)
for (let i = 0; i < 256; i++)
x[outPos + i] ^= A2_BUF[i] ^ x[xPos + i] ^ x[yPos + i];
else
for (let i = 0; i < 256; i++)
x[outPos + i] = A2_BUF[i] ^ x[xPos + i] ^ x[yPos + i];
(0, utils_ts_1.clean)(A2_BUF);
}
// Variable-Length Hash Function H'
function Hp(A, dkLen) {
const A8 = (0, utils_ts_1.u8)(A);
const T = new Uint32Array(1);
const T8 = (0, utils_ts_1.u8)(T);
T[0] = dkLen;
// Fast path
if (dkLen <= 64)
return blake2_ts_1.blake2b.create({ dkLen }).update(T8).update(A8).digest();
const out = new Uint8Array(dkLen);
let V = blake2_ts_1.blake2b.create({}).update(T8).update(A8).digest();
let pos = 0;
// First block
out.set(V.subarray(0, 32));
pos += 32;
// Rest blocks
for (; dkLen - pos > 64; pos += 32) {
const Vh = blake2_ts_1.blake2b.create({}).update(V);
Vh.digestInto(V);
Vh.destroy();
out.set(V.subarray(0, 32), pos);
}
// Last block
out.set((0, blake2_ts_1.blake2b)(V, { dkLen: dkLen - pos }), pos);
(0, utils_ts_1.clean)(V, T);
return (0, utils_ts_1.u32)(out);
}
// Used only inside process block!
function indexAlpha(r, s, laneLen, segmentLen, index, randL, sameLane = false) {
// This is ugly, but close enough to reference implementation.
let area;
if (r === 0) {
if (s === 0)
area = index - 1;
else if (sameLane)
area = s * segmentLen + index - 1;
else
area = s * segmentLen + (index == 0 ? -1 : 0);
}
else if (sameLane)
area = laneLen - segmentLen + index - 1;
else
area = laneLen - segmentLen + (index == 0 ? -1 : 0);
const startPos = r !== 0 && s !== ARGON2_SYNC_POINTS - 1 ? (s + 1) * segmentLen : 0;
const rel = area - 1 - mul(area, mul(randL, randL).h).h;
return (startPos + rel) % laneLen;
}
const maxUint32 = Math.pow(2, 32);
function isU32(num) {
return Number.isSafeInteger(num) && num >= 0 && num < maxUint32;
}
function argon2Opts(opts) {
const merged = {
version: 0x13,
dkLen: 32,
maxmem: maxUint32 - 1,
asyncTick: 10,
};
for (let [k, v] of Object.entries(opts))
if (v != null)
merged[k] = v;
const { dkLen, p, m, t, version, onProgress } = merged;
if (!isU32(dkLen) || dkLen < 4)
throw new Error('dkLen should be at least 4 bytes');
if (!isU32(p) || p < 1 || p >= Math.pow(2, 24))
throw new Error('p should be 1 <= p < 2^24');
if (!isU32(m))
throw new Error('m should be 0 <= m < 2^32');
if (!isU32(t) || t < 1)
throw new Error('t (iterations) should be 1 <= t < 2^32');
if (onProgress !== undefined && typeof onProgress !== 'function')
throw new Error('progressCb should be function');
/*
Memory size m MUST be an integer number of kibibytes from 8*p to 2^(32)-1. The actual number of blocks is m', which is m rounded down to the nearest multiple of 4*p.
*/
if (!isU32(m) || m < 8 * p)
throw new Error('memory should be at least 8*p bytes');
if (version !== 0x10 && version !== 0x13)
throw new Error('unknown version=' + version);
return merged;
}
function argon2Init(password, salt, type, opts) {
password = (0, utils_ts_1.kdfInputToBytes)(password);
salt = (0, utils_ts_1.kdfInputToBytes)(salt);
(0, utils_ts_1.abytes)(password);
(0, utils_ts_1.abytes)(salt);
if (!isU32(password.length))
throw new Error('password should be less than 4 GB');
if (!isU32(salt.length) || salt.length < 8)
throw new Error('salt should be at least 8 bytes and less than 4 GB');
if (!Object.values(AT).includes(type))
throw new Error('invalid type');
let { p, dkLen, m, t, version, key, personalization, maxmem, onProgress, asyncTick } = argon2Opts(opts);
// Validation
key = abytesOrZero(key);
personalization = abytesOrZero(personalization);
// H_0 = H^(64)(LE32(p) || LE32(T) || LE32(m) || LE32(t) ||
// LE32(v) || LE32(y) || LE32(length(P)) || P ||
// LE32(length(S)) || S || LE32(length(K)) || K ||
// LE32(length(X)) || X)
const h = blake2_ts_1.blake2b.create({});
const BUF = new Uint32Array(1);
const BUF8 = (0, utils_ts_1.u8)(BUF);
for (let item of [p, dkLen, m, t, version, type]) {
BUF[0] = item;
h.update(BUF8);
}
for (let i of [password, salt, key, personalization]) {
BUF[0] = i.length; // BUF is u32 array, this is valid
h.update(BUF8).update(i);
}
const H0 = new Uint32Array(18);
const H0_8 = (0, utils_ts_1.u8)(H0);
h.digestInto(H0_8);
// 256 u32 = 1024 (BLOCK_SIZE), fills A2_BUF on processing
// Params
const lanes = p;
// m' = 4 * p * floor (m / 4p)
const mP = 4 * p * Math.floor(m / (ARGON2_SYNC_POINTS * p));
//q = m' / p columns
const laneLen = Math.floor(mP / p);
const segmentLen = Math.floor(laneLen / ARGON2_SYNC_POINTS);
const memUsed = mP * 256;
if (!isU32(maxmem) || memUsed > maxmem)
throw new Error('mem should be less than 2**32, got: maxmem=' + maxmem + ', memused=' + memUsed);
const B = new Uint32Array(memUsed);
// Fill first blocks
for (let l = 0; l < p; l++) {
const i = 256 * laneLen * l;
// B[i][0] = H'^(1024)(H_0 || LE32(0) || LE32(i))
H0[17] = l;
H0[16] = 0;
B.set(Hp(H0, 1024), i);
// B[i][1] = H'^(1024)(H_0 || LE32(1) || LE32(i))
H0[16] = 1;
B.set(Hp(H0, 1024), i + 256);
}
let perBlock = () => { };
if (onProgress) {
const totalBlock = t * ARGON2_SYNC_POINTS * p * segmentLen;
// Invoke callback if progress changes from 10.01 to 10.02
// Allows to draw smooth progress bar on up to 8K screen
const callbackPer = Math.max(Math.floor(totalBlock / 10000), 1);
let blockCnt = 0;
perBlock = () => {
blockCnt++;
if (onProgress && (!(blockCnt % callbackPer) || blockCnt === totalBlock))
onProgress(blockCnt / totalBlock);
};
}
(0, utils_ts_1.clean)(BUF, H0);
return { type, mP, p, t, version, B, laneLen, lanes, segmentLen, dkLen, perBlock, asyncTick };
}
function argon2Output(B, p, laneLen, dkLen) {
const B_final = new Uint32Array(256);
for (let l = 0; l < p; l++)
for (let j = 0; j < 256; j++)
B_final[j] ^= B[256 * (laneLen * l + laneLen - 1) + j];
const res = (0, utils_ts_1.u8)(Hp(B_final, dkLen));
(0, utils_ts_1.clean)(B_final);
return res;
}
function processBlock(B, address, l, r, s, index, laneLen, segmentLen, lanes, offset, prev, dataIndependent, needXor) {
if (offset % laneLen)
prev = offset - 1;
let randL, randH;
if (dataIndependent) {
let i128 = index % 128;
if (i128 === 0) {
address[256 + 12]++;
block(address, 256, 2 * 256, 0, false);
block(address, 0, 2 * 256, 0, false);
}
randL = address[2 * i128];
randH = address[2 * i128 + 1];
}
else {
const T = 256 * prev;
randL = B[T];
randH = B[T + 1];
}
// address block
const refLane = r === 0 && s === 0 ? l : randH % lanes;
const refPos = indexAlpha(r, s, laneLen, segmentLen, index, randL, refLane == l);
const refBlock = laneLen * refLane + refPos;
// B[i][j] = G(B[i][j-1], B[l][z])
block(B, 256 * prev, 256 * refBlock, offset * 256, needXor);
}
function argon2(type, password, salt, opts) {
const { mP, p, t, version, B, laneLen, lanes, segmentLen, dkLen, perBlock } = argon2Init(password, salt, type, opts);
// Pre-loop setup
// [address, input, zero_block] format so we can pass single U32 to block function
const address = new Uint32Array(3 * 256);
address[256 + 6] = mP;
address[256 + 8] = t;
address[256 + 10] = type;
for (let r = 0; r < t; r++) {
const needXor = r !== 0 && version === 0x13;
address[256 + 0] = r;
for (let s = 0; s < ARGON2_SYNC_POINTS; s++) {
address[256 + 4] = s;
const dataIndependent = type == AT.Argon2i || (type == AT.Argon2id && r === 0 && s < 2);
for (let l = 0; l < p; l++) {
address[256 + 2] = l;
address[256 + 12] = 0;
let startPos = 0;
if (r === 0 && s === 0) {
startPos = 2;
if (dataIndependent) {
address[256 + 12]++;
block(address, 256, 2 * 256, 0, false);
block(address, 0, 2 * 256, 0, false);
}
}
// current block postion
let offset = l * laneLen + s * segmentLen + startPos;
// previous block position
let prev = offset % laneLen ? offset - 1 : offset + laneLen - 1;
for (let index = startPos; index < segmentLen; index++, offset++, prev++) {
perBlock();
processBlock(B, address, l, r, s, index, laneLen, segmentLen, lanes, offset, prev, dataIndependent, needXor);
}
}
}
}
(0, utils_ts_1.clean)(address);
return argon2Output(B, p, laneLen, dkLen);
}
/** argon2d GPU-resistant version. */
const argon2d = (password, salt, opts) => argon2(AT.Argond2d, password, salt, opts);
exports.argon2d = argon2d;
/** argon2i side-channel-resistant version. */
const argon2i = (password, salt, opts) => argon2(AT.Argon2i, password, salt, opts);
exports.argon2i = argon2i;
/** argon2id, combining i+d, the most popular version from RFC 9106 */
const argon2id = (password, salt, opts) => argon2(AT.Argon2id, password, salt, opts);
exports.argon2id = argon2id;
async function argon2Async(type, password, salt, opts) {
const { mP, p, t, version, B, laneLen, lanes, segmentLen, dkLen, perBlock, asyncTick } = argon2Init(password, salt, type, opts);
// Pre-loop setup
// [address, input, zero_block] format so we can pass single U32 to block function
const address = new Uint32Array(3 * 256);
address[256 + 6] = mP;
address[256 + 8] = t;
address[256 + 10] = type;
let ts = Date.now();
for (let r = 0; r < t; r++) {
const needXor = r !== 0 && version === 0x13;
address[256 + 0] = r;
for (let s = 0; s < ARGON2_SYNC_POINTS; s++) {
address[256 + 4] = s;
const dataIndependent = type == AT.Argon2i || (type == AT.Argon2id && r === 0 && s < 2);
for (let l = 0; l < p; l++) {
address[256 + 2] = l;
address[256 + 12] = 0;
let startPos = 0;
if (r === 0 && s === 0) {
startPos = 2;
if (dataIndependent) {
address[256 + 12]++;
block(address, 256, 2 * 256, 0, false);
block(address, 0, 2 * 256, 0, false);
}
}
// current block postion
let offset = l * laneLen + s * segmentLen + startPos;
// previous block position
let prev = offset % laneLen ? offset - 1 : offset + laneLen - 1;
for (let index = startPos; index < segmentLen; index++, offset++, prev++) {
perBlock();
processBlock(B, address, l, r, s, index, laneLen, segmentLen, lanes, offset, prev, dataIndependent, needXor);
// Date.now() is not monotonic, so in case if clock goes backwards we return return control too
const diff = Date.now() - ts;
if (!(diff >= 0 && diff < asyncTick)) {
await (0, utils_ts_1.nextTick)();
ts += diff;
}
}
}
}
}
(0, utils_ts_1.clean)(address);
return argon2Output(B, p, laneLen, dkLen);
}
/** argon2d async GPU-resistant version. */
const argon2dAsync = (password, salt, opts) => argon2Async(AT.Argond2d, password, salt, opts);
exports.argon2dAsync = argon2dAsync;
/** argon2i async side-channel-resistant version. */
const argon2iAsync = (password, salt, opts) => argon2Async(AT.Argon2i, password, salt, opts);
exports.argon2iAsync = argon2iAsync;
/** argon2id async, combining i+d, the most popular version from RFC 9106 */
const argon2idAsync = (password, salt, opts) => argon2Async(AT.Argon2id, password, salt, opts);
exports.argon2idAsync = argon2idAsync;
//# sourceMappingURL=argon2.js.map