"use strict"; Object.defineProperty(exports, "__esModule", { value: true }); exports.ripemd160 = exports.RIPEMD160 = exports.md5 = exports.MD5 = exports.sha1 = exports.SHA1 = void 0; /** SHA1 (RFC 3174), MD5 (RFC 1321) and RIPEMD160 (RFC 2286) legacy, weak hash functions. Don't use them in a new protocol. What "weak" means: - Collisions can be made with 2^18 effort in MD5, 2^60 in SHA1, 2^80 in RIPEMD160. - No practical pre-image attacks (only theoretical, 2^123.4) - HMAC seems kinda ok: https://datatracker.ietf.org/doc/html/rfc6151 * @module */ const _md_ts_1 = require("./_md.js"); const utils_ts_1 = require("./utils.js"); /** Initial SHA1 state */ const SHA1_IV = /* @__PURE__ */ Uint32Array.from([ 0x67452301, 0xefcdab89, 0x98badcfe, 0x10325476, 0xc3d2e1f0, ]); // Reusable temporary buffer const SHA1_W = /* @__PURE__ */ new Uint32Array(80); /** SHA1 legacy hash class. */ class SHA1 extends _md_ts_1.HashMD { constructor() { super(64, 20, 8, false); this.A = SHA1_IV[0] | 0; this.B = SHA1_IV[1] | 0; this.C = SHA1_IV[2] | 0; this.D = SHA1_IV[3] | 0; this.E = SHA1_IV[4] | 0; } get() { const { A, B, C, D, E } = this; return [A, B, C, D, E]; } set(A, B, C, D, E) { this.A = A | 0; this.B = B | 0; this.C = C | 0; this.D = D | 0; this.E = E | 0; } process(view, offset) { for (let i = 0; i < 16; i++, offset += 4) SHA1_W[i] = view.getUint32(offset, false); for (let i = 16; i < 80; i++) SHA1_W[i] = (0, utils_ts_1.rotl)(SHA1_W[i - 3] ^ SHA1_W[i - 8] ^ SHA1_W[i - 14] ^ SHA1_W[i - 16], 1); // Compression function main loop, 80 rounds let { A, B, C, D, E } = this; for (let i = 0; i < 80; i++) { let F, K; if (i < 20) { F = (0, _md_ts_1.Chi)(B, C, D); K = 0x5a827999; } else if (i < 40) { F = B ^ C ^ D; K = 0x6ed9eba1; } else if (i < 60) { F = (0, _md_ts_1.Maj)(B, C, D); K = 0x8f1bbcdc; } else { F = B ^ C ^ D; K = 0xca62c1d6; } const T = ((0, utils_ts_1.rotl)(A, 5) + F + E + K + SHA1_W[i]) | 0; E = D; D = C; C = (0, utils_ts_1.rotl)(B, 30); B = A; A = T; } // Add the compressed chunk to the current hash value A = (A + this.A) | 0; B = (B + this.B) | 0; C = (C + this.C) | 0; D = (D + this.D) | 0; E = (E + this.E) | 0; this.set(A, B, C, D, E); } roundClean() { (0, utils_ts_1.clean)(SHA1_W); } destroy() { this.set(0, 0, 0, 0, 0); (0, utils_ts_1.clean)(this.buffer); } } exports.SHA1 = SHA1; /** SHA1 (RFC 3174) legacy hash function. It was cryptographically broken. */ exports.sha1 = (0, utils_ts_1.createHasher)(() => new SHA1()); /** Per-round constants */ const p32 = /* @__PURE__ */ Math.pow(2, 32); const K = /* @__PURE__ */ Array.from({ length: 64 }, (_, i) => Math.floor(p32 * Math.abs(Math.sin(i + 1)))); /** md5 initial state: same as sha1, but 4 u32 instead of 5. */ const MD5_IV = /* @__PURE__ */ SHA1_IV.slice(0, 4); // Reusable temporary buffer const MD5_W = /* @__PURE__ */ new Uint32Array(16); /** MD5 legacy hash class. */ class MD5 extends _md_ts_1.HashMD { constructor() { super(64, 16, 8, true); this.A = MD5_IV[0] | 0; this.B = MD5_IV[1] | 0; this.C = MD5_IV[2] | 0; this.D = MD5_IV[3] | 0; } get() { const { A, B, C, D } = this; return [A, B, C, D]; } set(A, B, C, D) { this.A = A | 0; this.B = B | 0; this.C = C | 0; this.D = D | 0; } process(view, offset) { for (let i = 0; i < 16; i++, offset += 4) MD5_W[i] = view.getUint32(offset, true); // Compression function main loop, 64 rounds let { A, B, C, D } = this; for (let i = 0; i < 64; i++) { let F, g, s; if (i < 16) { F = (0, _md_ts_1.Chi)(B, C, D); g = i; s = [7, 12, 17, 22]; } else if (i < 32) { F = (0, _md_ts_1.Chi)(D, B, C); g = (5 * i + 1) % 16; s = [5, 9, 14, 20]; } else if (i < 48) { F = B ^ C ^ D; g = (3 * i + 5) % 16; s = [4, 11, 16, 23]; } else { F = C ^ (B | ~D); g = (7 * i) % 16; s = [6, 10, 15, 21]; } F = F + A + K[i] + MD5_W[g]; A = D; D = C; C = B; B = B + (0, utils_ts_1.rotl)(F, s[i % 4]); } // Add the compressed chunk to the current hash value A = (A + this.A) | 0; B = (B + this.B) | 0; C = (C + this.C) | 0; D = (D + this.D) | 0; this.set(A, B, C, D); } roundClean() { (0, utils_ts_1.clean)(MD5_W); } destroy() { this.set(0, 0, 0, 0); (0, utils_ts_1.clean)(this.buffer); } } exports.MD5 = MD5; /** * MD5 (RFC 1321) legacy hash function. It was cryptographically broken. * MD5 architecture is similar to SHA1, with some differences: * - Reduced output length: 16 bytes (128 bit) instead of 20 * - 64 rounds, instead of 80 * - Little-endian: could be faster, but will require more code * - Non-linear index selection: huge speed-up for unroll * - Per round constants: more memory accesses, additional speed-up for unroll */ exports.md5 = (0, utils_ts_1.createHasher)(() => new MD5()); // RIPEMD-160 const Rho160 = /* @__PURE__ */ Uint8Array.from([ 7, 4, 13, 1, 10, 6, 15, 3, 12, 0, 9, 5, 2, 14, 11, 8, ]); const Id160 = /* @__PURE__ */ (() => Uint8Array.from(new Array(16).fill(0).map((_, i) => i)))(); const Pi160 = /* @__PURE__ */ (() => Id160.map((i) => (9 * i + 5) % 16))(); const idxLR = /* @__PURE__ */ (() => { const L = [Id160]; const R = [Pi160]; const res = [L, R]; for (let i = 0; i < 4; i++) for (let j of res) j.push(j[i].map((k) => Rho160[k])); return res; })(); const idxL = /* @__PURE__ */ (() => idxLR[0])(); const idxR = /* @__PURE__ */ (() => idxLR[1])(); // const [idxL, idxR] = idxLR; const shifts160 = /* @__PURE__ */ [ [11, 14, 15, 12, 5, 8, 7, 9, 11, 13, 14, 15, 6, 7, 9, 8], [12, 13, 11, 15, 6, 9, 9, 7, 12, 15, 11, 13, 7, 8, 7, 7], [13, 15, 14, 11, 7, 7, 6, 8, 13, 14, 13, 12, 5, 5, 6, 9], [14, 11, 12, 14, 8, 6, 5, 5, 15, 12, 15, 14, 9, 9, 8, 6], [15, 12, 13, 13, 9, 5, 8, 6, 14, 11, 12, 11, 8, 6, 5, 5], ].map((i) => Uint8Array.from(i)); const shiftsL160 = /* @__PURE__ */ idxL.map((idx, i) => idx.map((j) => shifts160[i][j])); const shiftsR160 = /* @__PURE__ */ idxR.map((idx, i) => idx.map((j) => shifts160[i][j])); const Kl160 = /* @__PURE__ */ Uint32Array.from([ 0x00000000, 0x5a827999, 0x6ed9eba1, 0x8f1bbcdc, 0xa953fd4e, ]); const Kr160 = /* @__PURE__ */ Uint32Array.from([ 0x50a28be6, 0x5c4dd124, 0x6d703ef3, 0x7a6d76e9, 0x00000000, ]); // It's called f() in spec. function ripemd_f(group, x, y, z) { if (group === 0) return x ^ y ^ z; if (group === 1) return (x & y) | (~x & z); if (group === 2) return (x | ~y) ^ z; if (group === 3) return (x & z) | (y & ~z); return x ^ (y | ~z); } // Reusable temporary buffer const BUF_160 = /* @__PURE__ */ new Uint32Array(16); class RIPEMD160 extends _md_ts_1.HashMD { constructor() { super(64, 20, 8, true); this.h0 = 0x67452301 | 0; this.h1 = 0xefcdab89 | 0; this.h2 = 0x98badcfe | 0; this.h3 = 0x10325476 | 0; this.h4 = 0xc3d2e1f0 | 0; } get() { const { h0, h1, h2, h3, h4 } = this; return [h0, h1, h2, h3, h4]; } set(h0, h1, h2, h3, h4) { this.h0 = h0 | 0; this.h1 = h1 | 0; this.h2 = h2 | 0; this.h3 = h3 | 0; this.h4 = h4 | 0; } process(view, offset) { for (let i = 0; i < 16; i++, offset += 4) BUF_160[i] = view.getUint32(offset, true); // prettier-ignore let al = this.h0 | 0, ar = al, bl = this.h1 | 0, br = bl, cl = this.h2 | 0, cr = cl, dl = this.h3 | 0, dr = dl, el = this.h4 | 0, er = el; // Instead of iterating 0 to 80, we split it into 5 groups // And use the groups in constants, functions, etc. Much simpler for (let group = 0; group < 5; group++) { const rGroup = 4 - group; const hbl = Kl160[group], hbr = Kr160[group]; // prettier-ignore const rl = idxL[group], rr = idxR[group]; // prettier-ignore const sl = shiftsL160[group], sr = shiftsR160[group]; // prettier-ignore for (let i = 0; i < 16; i++) { const tl = ((0, utils_ts_1.rotl)(al + ripemd_f(group, bl, cl, dl) + BUF_160[rl[i]] + hbl, sl[i]) + el) | 0; al = el, el = dl, dl = (0, utils_ts_1.rotl)(cl, 10) | 0, cl = bl, bl = tl; // prettier-ignore } // 2 loops are 10% faster for (let i = 0; i < 16; i++) { const tr = ((0, utils_ts_1.rotl)(ar + ripemd_f(rGroup, br, cr, dr) + BUF_160[rr[i]] + hbr, sr[i]) + er) | 0; ar = er, er = dr, dr = (0, utils_ts_1.rotl)(cr, 10) | 0, cr = br, br = tr; // prettier-ignore } } // Add the compressed chunk to the current hash value this.set((this.h1 + cl + dr) | 0, (this.h2 + dl + er) | 0, (this.h3 + el + ar) | 0, (this.h4 + al + br) | 0, (this.h0 + bl + cr) | 0); } roundClean() { (0, utils_ts_1.clean)(BUF_160); } destroy() { this.destroyed = true; (0, utils_ts_1.clean)(this.buffer); this.set(0, 0, 0, 0, 0); } } exports.RIPEMD160 = RIPEMD160; /** * RIPEMD-160 - a legacy hash function from 1990s. * * https://homes.esat.kuleuven.be/~bosselae/ripemd160.html * * https://homes.esat.kuleuven.be/~bosselae/ripemd160/pdf/AB-9601/AB-9601.pdf */ exports.ripemd160 = (0, utils_ts_1.createHasher)(() => new RIPEMD160()); //# sourceMappingURL=legacy.js.map